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Abstract 

 A self-designing flight control system (SDFCS) could 
provide a cost-effective means for developing controllers 
for new aircraft by eliminating analyst-intensive design of 
numerous individual controllers, each optimized for a 
single flight condition.  Additionally, the SDFCS could 
improve the capabilities of existing aircraft by enhancing 
control performance in new flight regimes such as high 
angle-of-attack or post-stall maneuvers.  Finally, the 
SDFCS could automatically reconfigure the control system 
to account for sudden changes such as may result from 
airframe and/or effector impairment(s).  Rapid 
identification of time-varying, nonlinear plants is an 
important enabling technology for most SDFCS concepts.  
In this paper, the authors present a modified sequential 
least squares (MSLS) parameter identification method and 
compare its performance to that of standard RLS 
techniques using a simulated nonlinear F-16 with multi-
axes thrust-vectoring (MATV) aircraft.  It is shown that 
MSLS offers significant improvement in performance over 
conventional RLS parameter identification by providing:  
(1) a recursive estimation algorithm that penalizes noisy 
estimates and is less subject to ill-conditioning as its 
forgetting factor is reduced,  (2) detection of airframe and 
effector impairments and corresponding adjustments of 
the algorithm settings,  and (3) an intelligent supervisor 
that injects a minimum level of effector random activity to 
ensure identifiability. 
 

Introduction 

 This work is motivated by the need for rapid on-line 
identification of aircraft parameters that may be varying 
with time at unknown rates.  The goal of the work 
outlined below is to create a parameter estimation 
algorithm that is: (a) less subject to numerical ill-
conditioning, (b) less sensitive to noisy measurements, 
and (c) able to detect and track sudden changes in 
parameters that can arise if an airframe and/or effectors 
is/are impaired or if a low-order model is used to 
represent a higher-order system [1] [2].   
 In general, the linear parameter estimation problem 
may be stated as follows:  find the "best" estimate of the 
parameter vector, θ  ←n, in the linear model: 

 y(n)   =    θTφ(n)  +  υ(n) (1) 

where φ  ←n is a vector of known measurements,  υ(n) is 
the residual error due to measurement noise or 
unmodeled dynamics, and y(k) is the system output as 
measured at sample k.  The most common way to find the 
"best" estimate is to find the parameter vector that 
minimizes a cost function, J, that is the sum of the squares 
of the residual, υ(n), over a set of k observations: 

 J  =   ∑
n=1

k
 [ y(n)  –   θTφ(n) ]2  (2) 

This is the equation-error or minimum-variance estimate.  For 
batch estimation problems, the cost function can be 
rewritten in matrix form as 

 J   =   [ y  –  A θ ]T [ y  –  A θ ] (3) 

where y  =  [ y(1), y(2), ..., y(k) ]T and 

 A  =  [ φ(1), φ(2), ..., φ(k)]T. 
 The most computationally efficient batch parameter 
estimation routines are based on the normal equations [3].  
If k ≥ n, the normal equations may be used to find a 
unique set of parameters, θ*, that minimizes (3): 

 θ*   =   (AT A )–1 AT y (4) 

 To allow Recursive Least Squares (RLS) algorithms to 
vary rapidly with time, historical information must be 
quickly forgotten.  This is most often accomplished via the 
use of a forgetting factor, λ, which, in effect, introduces an 
exponentially decaying weight on prior measurements [4].  
The reduction of λ, however, may cause the identification 
method to become numerically ill-conditioned as the 
matrix of observations, A, becomes singular due to the 
lack of sufficient information. 
 One problem with the normal equation solution is 
that if A is moderately ill-conditioned, AT A  may be 
severely degraded [3].  Most recursive parameter 
identification routines, including RLS and the Kalman-
Bucy filter, depend upon keeping track of  

 P   =   (AT A )–1 (5) 

which has the same numerical ill-conditioning problems 
described in the normal equations [5].  A number of 
techniques have been proposed to overcome the ill-
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conditioning problem described above, including 
Bierman's U-D factorization algorithm [6] and Bobrow and 
Murray's Sequential Least Squares (SLS) algorithm  [7].   
For this work, the authors choose to investigate 
modifications to the SLS algorithm due to the ease with 
which additional constraints can be incorporated into it. 

Sequential Least Squares 

 The following is a summary of the SLS algorithm;  a 
full derivation is presented in [7].  Given a system of 
equations of the form 

  y   =   A θ  (6) 

find an orthogonal transformation, Q, such that 

 Q A  =  






R

 
0

  (7) 

where R is an upper-triangular matrix.  If we define 

 Q y   =   







y–

 

y~ 

  (8) 

and apply Q to both sides of (6), then the least-squares 
estimate of θ can be found by solving the system 

  y–    =   R θ*  (9) 

where θ* can be found by simple back-substitution 
because R is triangular.  For well-conditioned problems, 
θ* is identical to the least-squares estimate found by 
solving the normal equations [4]. 
 Given an existing R, a new observation at time, n, 
may be incorporated into the system by appending the 
observation to (9) and re-arranging so that the system 
solves for the required change in the parameter vector, ∆θ.  
Thus, 

 






R

 
φ(n)

  ∆θ   =   






0

 
ε(n) 

  (10) 

in which ε(n) is the current prediction error defined by  

 ε(n)   =   y(n)  –   θT
n –1φ(n) (11) 

where θT
n –1 represents the least-squares parameter 

estimate as computed during the previous update.  For 
well-conditioned problems, this is equivalent to an RLS 
update, where at each sample period the distortion 
function, d( ), to be minimized is   

 d( )   =   
1
2  ε2(n) (12) 

 Once again, the system in (11) may be triangularized 
as described above using a different  orthogonal matrix, 
Q.  In [7], a Givens rotation is used to zero out the φ(n) 
row vector on the left side of (10);  however, any number 
of orthogonal transformations may be used, such as a 
Householder transformation. 
 To introduce a forgetting factor, λ, one need only pre-
multiply R by λ1/2 in (10) before the updating is 
performed.   (Note that because SLS is a square-root 
algorithm, the square-root of the RLS forgetting factor, λ, 
should be used.  Bobrow and Murray did not do this in 
their original paper, resulting in some misleading 
SLS/RLS comparisons). 

Constrained Cost Function 

 In addition to numerical conditioning problems, 
small forgetting factors also tend to result in parameter 
estimates that are extremely sensitive to measurement 
noise and therefore tend to fluctuate wildly.  The authors 
dealt with this problem by modifying the distortion 
function (12) so as to discourage excessively large changes 
in parameter values from sample to sample.  The 
modification chosen is the addition of a simple penalty on 
the magnitude of the parameter change, ∆θ: 

 d( )   =   
1
2  ε2(n)  +  ∆θT W0 ∆θ (13) 

The above modified distortion function can be 
incorporated into the augmented system of equations (10) 
as follows: 

 







R
 

φ(n)
 

W0

  ∆θ   =   







0

 
ε(n) 

 
0 

  (14) 

and (14) may be triangularized in the same manner 
described in the previous section.  In general, W0 may be 
selected to be a matrix with constant diagonal terms.  If it 
is known a priori that some parameters are likely to 
change more rapidly than others, the corresponding W0 
values for those parameters may be made smaller. 
 Such a modification to the distortion function may 
seem counter-intuitive, because the goal of the modified 
algorithm is to track rapidly varying parameters;  
however, simulation results show that a small amount of 
penalty on parameter fluctuation will greatly attenuate 
parameter noise while maintaining a high degree of 
tracking ability. 
 It should be noted that the introduction of the 
additional penalty on parameter change is not equivalent 
to low-pass filtering the parameter estimates.  In general, 
a low-pass filtering approach would introduce a lag in the 



 

 

estimate track, whereas the penalty method does not, as is 
seen in the next section. 

Linear Simulation Results 

 As an example, consider the system 

 y(n)   =   [θ1, θ2] 






φ1
 

φ2

   +  υ(k) (15) 

where θ1 is time-varying, and υ(k) is Gaussian white noise 
with σ2 = 0.1.  To intentionally create a poorly conditioned 
observation matrix, the measurements φ1 and φ2, which 
would correspond to state measurements and/or surface 
deflections in a flight-control context, were intentionally 
driven with highly correlated Gaussian signals: 

 φ1(n)   =   N(0, 1) (16) 

 φ2(n)   =   φ1(n)  +  N(0, 0.01) (17) 

 For this experiment, θ2 was fixed, and the modified 
SLS parameter estimates for a time-varying θ1 are shown 
in Fig. 1.   Note that in the figure the dashed lines 
represent the true parameter values and the solid lines 
represent the parameter estimates.  In Fig. 1, the two lines 
are difficult to distinguish due to the accuracy of the 
tracking algorithm. 
 For purposes of comparison, Fig. 2 shows the RLS 
estimate of the same system.  Normally, to remove the 
noise from the estimate shown in Fig. 2, one would 
increase the forgetting factor, λ.  However, as shown in 
Fig. 3, while this does smooth out the estimates while the 
parameter is not varying with time, it yields no 
improvement while θ1 is time-varying.   
 It was found that the magnitude of the random signal 
in (17) could be halved resulting in only minor 
degradation in the MSLS estimates;  however, any 
reduction from the value set in (17) resulted in a complete 
breakdown of the RLS algorithm. 

Abrupt Change Detection 

 While the constrained cost function allows tracking of 
parameters that change relatively rapidly with time, it 
does increase the time required to converge to a new 
value of a parameter that changes instantaneously.  This 
behavior can be remedied by introducing a change 
detector and modifying the identification algorithm 
settings when abrupt changes are detected. 
 In previous work, Barron Associates, Inc. (BAI) 
successfully demonstrated the use of Polynomial Neural 
Networks (PNNs) as impairment detectors [1].   
 In [8], a detection method is presented that tracks a 
moving average of the square of the prediction error, ε, as 

computed in (11).  An abrupt change is declared if the 
moving average exceeds a threshold.  In the current work, 
the authors also use the value of the prediction error,  but 
the statistic computed is a measure of the per unit increase 
in the magnitude of the prediction error over the time-
averaged nominal value.  It is found that using this 
technique, a single threshold value can be established that 
gives good detection performance for a variety of state 
equations and flight conditions. 
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Fig. 1: MSLS Estimate of Time-Varying Parameter  
(λ = 0.1, W0 = 0.03 I ) 
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Fig. 2:  RLS Estimate of Time-Varying Parameter  
(λ = 0.1) 
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Fig. 3:  RLS Estimate of Time-Varying Parameter  
(λ = 0.9) 

 Let ε
_

 k represent a moving average, over some 
window of length N, of the absolute prediction errors up 
to but not including time k: 

 ε
_

 k   =   
1
N ∑

k – N

k–1
|ε(n)|  (18) 



 

 

An abrupt change is declared if  

 
ε(k)  –  ε

_
k 

ε
_

k 
   >  Tε (19) 

where Tε is  a user-specified threshold.  Once a change is 
detected, all historical information (as contained in the R 
matrix) is forgotten, and the values of W0 and λ are 
reduced to encourage rapid reconvergence. 
 Figs. 4 and 5 show the results of MSLS on the same 
system described in (15) with and without the change 
detection.  In this example, θ1 was varied sinusoidally, 
and the value of θ2 was changed abruptly at sample 300.  
Note the improved convergence rate in Fig. 4.  For 
purposes of comparison, the RLS estimate of θ1 is shown 
in Fig. 6;  note that this is a more difficult tracking 
problem as can be seen by comparing Fig. 6 with Fig. 3.   
 Without change detection, both MSLS and RLS 
parameter estimates jump at the point of the change (Figs. 
5 and 6);  the peak values, however, are truncated to show 
the detail of the parameter tracking.  For MSLS without 
change detection the parameter error at sample 300 was 
about 225;  whereas for RLS the parameter error at sample 
300 was almost 1,200. 

Active Noise Injection 

 The above examples illustrate the improvements that 
can be achieved by modifying a numerically stable 
parameter identification algorithm so that it uses a 
constrained cost function and can detect abrupt changes.  
While the inputs to the test problem were highly 
correlated; they provided sufficient excitation to allow 
MSLS to identify the system parameters.   
 In a flight control context, however, there are often 
circumstances in which the inputs are not varying 
sufficiently to allow proper identification.  This problem 
may be addressed via the use of active noise injection 
(ANI).  It is possible for the parameter identification 
process to inject small amounts of random activity into the 
effectors.  This injection insures identifiability of the 
effector partials and assists in the identifiability of the 
state partials as well, depending on how the injected noise 
propagates through to the states. 
 Military flying qualities specifications allow 
perturbing signals provided the acceleration (presumably 
the acceleration felt by the pilot) due to the perturbing 
signals is less than 0.05 g rms [9].  Using this specification, 
one may use the identified effector partial derivatives to 
determine how additive noise will translate into 
acceleration felt by the pilot. 
 If the pilot is seated l1 feet in front of the aircraft 
center of mass along the body x-axis and l2 feet above the 
center of mass along the body z-axis, the square of the 

acceleration experienced by the pilot, ap, due to aircraft 
motion (not including gravity) may be calculated using 
the following relationship: 

 a2
p    =   u̇ 2  +   

 (v̇   +  l2 Ṗ   +  l1 Ṙ  )2  +   

 (ẇ   –  l1 Q̇  )2  (20) 

where the angular rates are measured in rad./sec. 
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Fig. 4: MSLS with Abrupt Change Detection  
(λ = 0.1, W0 = 0.03 I) 
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Fig. 5: MSLS without Abrupt Change Detection  
(λ = 0.1, W0 = 0.03 I) 
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Fig. 6: RLS without Abrupt Change Detection  
(λ = 0.1) 

 Assuming that a specified rms amount, ∆, of active 
noise injection (ANI) is added to the displacement of each 
effector, the rms state accelerations, ẋ ∆, due to effector 
ANI can be estimated using the estimated effector partials 
contained in the B matrix: 



 

 

 ẋ ∆  = | B^   | ∆ (21) 

where ∆ is a vector with ∆ in each element.  Note that 
because rms values are used, the polarity of the actual 
effector deflection is uncertain;  therefore, a "worst-case" 
scenario is considered by using the absolute value of the 
B^   matrix.  Using the same argument, the minus sign in 
(20) is changed to a plus sign when the equation is applied 
to rms values.  If the order of the states in the state vector 
is  

 x   =   [ u̇  , v̇  , ẇ  , Ṗ  , Q̇  , Ṙ  ]T (22) 

Eq. (18)  becomes: 

 a2
p    =   ∆2 [ (Σ

 
b1j)

2  +   

 (Σ
 
b2j  +  l2 Σ

 
b4j  +  l1 Σ

 
b6j )

2  +   

 (Σ
 
b3j  +  l1 Σ

 
b5j )

2 ] (23) 

where Σ
 
bij represents the sum of the absolute values of 

the elements in row i of the B^   matrix.  To allow for a 20% 
margin of error due to parameter estimation errors, the 
pilot acceleration due to ANI is never allowed to exceed 
0.04 g rms.  Additionally, this level of ANI is used only for 
a short period of time after an abrupt change is detected;  
at all other times, the level is set at 0.012 g rms.  
Additional logic is added to handle effector dynamics and 
to set limits on the ANI during periods in which the B^   
estimates are deemed unreliable;  however, this logic is 
not discussed here. 

F-16/MATV Simulation Results 

 The MSLS algorithm, with all modifications described 
above, was incorporated into a nonlinear, time-varying, 
six-degree-of-freedom, F-16/MATV simulation [10].  
Although the F-16 simulation was nonlinear, the 
parameter identification algorithm was tasked with 
identifying the terms in the A and B matrices of the linear 
state equations: 

ẋ    =   A x  +  B δ (24) 

where 

 x   =   [ u, v, w, P, Q, R, Φ, Θ, Ψ ] T (25) 

 δ   =   [ δe, δf, δdt, δdf, δr, δTe, δTr ] 
T (26) 

 The maneuver selected for evaluation was a two-
pound roll stick doublet executed during high angle-of-
attack flight at 20,000 ft. and Mach 0.23.  At one sec. into 
the maneuver, two lbs. of roll stick force were added to 
the trim value and maintained until five sec. into the 
maneuver;  at five sec. two lbs. of roll stick force in the 
opposite direction were added to the trim value and 
maintained until nine sec. into the maneuver,  at which 

time the roll command was returned to trim.  A pilot 
simulation module was used to keep α at or near 38.5o 
during the course of the maneuver. 
 The MSLS algorithm was nominally set at λ =  0.9, W0  
=  0.01;  however these values were reduced immediately 
after detection of an abrupt change.  The change detection 
algorithm used a window size, N, of 10 and a threshold Tε 
of 20.   
 Fig. 7 shows the true value and both the MSLS and 
RLS estimate of the a41 term, ∂Ṗ / w , during the course 
of the maneuver.  Fig. 8 shows just the MSLS estimate and 
truth on a larger scale to provide more detail. 
 To investigate the performance of the estimation 
algorithm during an impairment, a sudden tail 
impairment was introduced at 4.0 sec.  Fig. 9 shows the 
results of MSLS and RLS parameter identification of the 
b43 term, ∂Ṗ / δdt , during the same maneuver.  
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Fig. 7:  MSLS vs. RLS ∂Ṗ / w Parameter ID during Roll 
Doublet 
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Fig. 8:  Detail of MSLS ∂Ṗ / w Parameter ID during Roll 
Doublet 
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Fig. 9:  MSLS vs. RLS ∂Ṗ / δdt Parameter ID during Roll 
Doublet (Fault at 4.0 sec.) 

Conclusions 

 This paper has demonstrated several ways in which 
the recursive least squares (RLS) algorithm can be 
modified so that estimation performance is dramatically 
improved when some or all of the parameters in a system 
are time-varying.  In both linear and nonlinear 
simulations, the modified algorithm yields smooth 
parameter estimates that track both sudden and gradual 
parameter changes significantly better than does a 
conventional RLS approach. 
 The improved parameter identification capability 
demonstrated here is essential if a self-designing and 
reconfigurable flight control system is to be successfully 
employed.  On-going SDFCS research into the use of 
MSLS parameter identification in conjunction with linear 
and nonlinear optimum control strategies is providing 
encouraging results [11]. 
 Further investigations should be conducted to 
determine if the computational efficiency of the algorithm 
can be improved by applying the same modifications to 
an estimation algorithm based on the normal equations;  it 
may be the case that the constrained cost function and 
ANI alone are sufficient to avoid numerical ill-
conditioning of more conventional RLS algorithms.  
Additionally; the relationship between the temporal cost-
function constraint, introduced here, and the spatial 
constraints used in Mixed Regression schemes [8] should 
be investigated.  
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